
The AppleEvent Builder/Printer

Apple Events The Æ Builder/Printer
Version 1.3.3

Jens Peter Alfke
11 October 1993

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer
AppleScript Team
© Apple Computer, Inc. 1991–1993

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

Contents

Contents...iii
Introduction..1

OK, What Is It? 1
What’s New? 2

How To Call the Functions...3
AEBuild 3
AEBuildParameters 4
AEBuildAppleEvent 4
AEPrint 5

Descriptor-String Syntax...6
Basic Types 6
Coercion 7
Lists 8
Records 8
Apple Events 9
Substituting Parameters 10

Descriptor-String Grammar..11
An Example & Timing Comparison..13

C Code Using Object-Packing Library 13
Descriptor String 15
AEBuild Call 16
Timing Conclusions 17

The Demo Program..18
The Header Files...19

AEBuild.h 19
AEBuildGlobals.h 20
AEPrint.h 20

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer
Introduction

OK, What Is It?

Even with the helpful Object Support Library routines that assemble
common Apple event object descriptors, building descriptors and events
is still a pain. I’ve written a library of two functions that make it quick
and easy to build or display Apple event descriptors and the Apple events
themselves.
The AEBuild function takes a format string — a description in a very simple language of an
Apple event descriptor — and generates a real descriptor (which could be a record or list or
event) out of it. The AEPrint function does the reverse: given an Apple event descriptor, list or
record, it prettyprints it to a string. (The resulting string, if sent to AEBuild, would reproduce
the original AEDesc structure.)

AEBuild can plug variable parameters into the structures it generates — as with printf, all you
do is put marker characters in the format string and supply the parameter values as extra
function arguments.

The benefits of using this library are fourfold:

i It’s easier for you to write the code to build Apple event structures. You only
have to remember one function call and a few simple syntax rules. Your resulting code
is also easier to understand.
i As of version 1.2, your code is even faster: AEBuild is three to four times as fast
as the regular Apple Event Manager routines at constructing complex structures. (Your
mileage may vary.)
i Your code is smaller: the code for AEBuild and the AEStream library is about 6k
in size, and the overhead for each call is minimal. (Most of the descriptor string consists
of the same four-letter codes you’d be using in your program code anyway, and the
strings can even be stored in resources for more code savings.)
i AEPrint helps in debugging programs, by turning mysterious AEDesc structures
into human-readable text.

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

What’s New?

In version 1.3:
• A new function, AEPrintSize, computes how long the string built by AEPrint would be,

without actually creating it. This is useful if you want to allocate storage for the string
dynamically.

• AEPrint no longer truncates hex dumps (of unknown descriptors) after 32 bytes.

And in version 1.3.2:
• AEPrint no longer uses the stdio library. This should help reduce code size (and eliminate

some problems in code resources) but to do it I had to cripple floating-point display.
Floating-point descriptors now print as the integer part followed by “.XXXX”.

And in version 1.3.3:
• After a brilliant suggestion by Rob Dye, AEPrint now uses the built in float-to-text coercion to

display floating-point descriptors.
• Fixed a possible problem with AEBuild input strings containing Return characters, in the

MPW version of the library.

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

How To Call the Functions

These are all C functions. They all take variable
number s of arguments, so they’d be difficult or
impossible to call from Pascal, anyway. (And
remember, kids: there are no Pascal compilers for
the PowerPC chip…)

AEBuild

OSErr
AEBuild(AEDesc *desc, const char *descriptorStr, ...),
vAEBuild(AEDesc *desc, const char *descriptorStr, void *args);

AEBuild reads a null-terminated descriptor string (usually a constant, although it could come
from anywhere), parses it and builds a corresponding AEDesc structure. (Don’t worry, I’ll
describe the syntax of the descriptor string in the next section.) If the descriptor string contains
magic parameter-substitution characters (“@”) then corresponding values of the correct type
must be supplied as function arguments, just as with printf.

(vAEBuild is analogous to vprintf: Instead of passing the parameters along with the function,
you supply a va_list, as defined in <stdarg.h>, that points to the parameter list. It’s otherwise
identical.)

AEBuild returns an OSErr. Any errors returned by Apple Event Manager routines while building
the descriptor will be sent back to you. The most likely results are memFullErr and
errAECoercionFail. Also likely is aeBuildSyntaxErr, resulting from an incorrect descriptor
string. (Make sure to debug your descriptor strings, perhaps using the demo application, before
you put them in programs!)

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer
The basic version of AEBuild just reports that a syntax error occurred, without giving any
additional information. If you want to know more (perhaps the string came from a user, to
whom you’d like to report a helpful error message) you can use the other version of the library.
This version includes a wee bit of extra code, and two global variables that will contain useful
information after a syntax error:

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer
extern AEBuild_SyntaxErrType

AEBuild_ErrCode;
extern long

AEBuild_ErrPos;

AEBuild_ErrCode is an enumerated value that will contain a specific error code. The error
codes are defined in AEBuild.h. AEBuild_ErrPos will contain the index into the descriptor string
at which the error occurred: usually one character past the end of the offending token.

AEBuildParameters

OSErr AEBuildParameters(AppleEvent *event, const char *descriptorStr, ...);

AEBuildParameters adds parameters and/or attributes to an existing Apple event.
descriptorStr specifies the parameters (required and optional) and attributes. Its syntax is
described below (see especially the Apple Event Descriptor Strings subsection); it’s almost the
same as the syntax for AEBuild, with a few additions and modifications.

(vAEBuildParameters is analogous to vprintf: Instead of passing the parameters along with
the function, you supply a va_list, as defined in <stdarg.h>, that points to the parameter list.
It’s otherwise identical.)

AEBuildAppleEvent

AEBuildAppleEvent(AEEventClass theClass, AEEventID theID,
DescType addressType, void *addressData, long addressLength,
short returnID, long transactionID,
AppleEvent *event,
const char *descriptorStr, ...);

AEBuildAppleEvent is like AEBuild but builds an Apple event, including parameters and
attributes. Or, you could say that it’s like AEBuildParameters but creates the event from
scratch.

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

Most of the parameters are just like the parameters to AECreateAppleEvent, although you pass
the target address data directly, instead of via a pre-built descriptor. The resulting Apple event
will appear in the event parameter.

descriptorStr specifies the parameters (required and optional) and attributes. The syntax is
described below (see especially the Apple Event Descriptor Strings subsection); it’s almost the
same as the syntax for AEBuild, with a few additions and modifications.

(vAEBuildAppleEvent is analogous to vprintf: Instead of passing the parameters along with
the function, you supply a va_list, as defined in <stdarg.h>, that points to the parameter list.
It’s otherwise identical.)

AEPrint

OSErr AEPrint(AEDesc *desc, char *bufStr, long bufSize);

AEPrint reads the Apple event descriptor desc and writes a corresponding descriptor string
into the string pointed to by bufStr. It will write no more than bufSize characters, including
the trailing null character. Any errors returned by Apple Event Manager routines will be
returned to the caller; this isn’t very likely unless the AEDesc structure is somehow corrupt.

The descriptor string produced, if sent to AEBuild, will build a descriptor identical to the
original one. AEPrint tries to detect AERecords that have been coerced to other types and print
them as coerced records. Structures of unknown type that can’t be coerced to AERecords are
dumped as hex data.

AEPrint can also print complete Apple events as well as regular descriptors. The syntax of the
resulting string for an event is like that used by AEBuildParameters and AEBuildAppleEvent,
except that:
• The string begins with the event class and ID separated by a backslash.
• the parameter list is surrounded by curly braces.
• Attributes are also displayed; they look like parameters but are preceded by “&”s.

u The builder functions do not accept this event syntax yet. u

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

AEPrintSize

OSErr AEPrintSize(AEDesc *desc, long *bufSizeNeeded);

AEPrintSize computes the buffer size that AEPrint would require if given the same descriptor.
(The size is equal to the string length, plus 1 byte for the trailing null.) This is handy for pre-
flighting AEPrint, if you want to allocate the buffer dynamically instead of relying on one of
fixed size .

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

Descriptor-String Syntax

The real meat of all this, of course, is the syntax of
the descriptor strings. It’s pretty simple: basic data
types like numbers and strings can be described
directly, and then built up into lists and records. I’ve
even provided a pseudo-BNF grammar (next section)
for those of you who actually enjoy reading those
things.

Basic Types

The fundamental data types are:

Type Examples Type-code Description

Integer 1234
-5678

'long' or
'shor'

A sequence of decimal digits,
optionally preceded by a minus sign.

Enum/Type
Code

whos
longint
'long'
<=
'8-)'
‘ZQ 5’
m

'enum'

(Use coercion
to change to
'type')

A magic four-letter code. Will be
truncated or padded with spaces to
exactly four characters. If you put
straight or curly single-quotes
around it, it can contain any
characters. If not, it can’t contain
any of: @‘'“”:-,([{}]) and can’t
begin with a digit.

String “A String.”
“Multiple lines
are okay.”

'TEXT' Any sequence of characters within
open and close curly quotes. Won’t
be null-terminated.

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

Hex Data «4170706C65»
«0102 03ff
 e b 6 c»

??
(Must be
coerced to
some type)

An even number of hex digits
between French quotes (Option-\,
Option-Shift-\). Whitespace is
ignored.

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

u Yes, you have to use the actual four-letter codes for enums, type codes, keywords and object
types, instead of the mnemonic constants. Luckily the codes are semi-mnemonic anyway. I
did it this way to avoid the massive overhead, both in code size and execution speed, of a
symbol table. You can find the definitions of the constants in the text file “AEObjects.p”,
which is part of the Apple Events Object Support Library. u

Coercion

Any basic element (except a hex string) by itself is a descriptor, whose
descriptorType is as given in the table. You can coerce a basic element to
a different type by putting it in parentheses with a type-code placed
before it. Here are some examples:

sing(1234)
type(line)
long(CODE)
hexd(“A String”)
'blob'(«4170706C65»)

u Coercions of numeric values are effected by calling AECoerceDesc; if the coercion fails, you’ll
get an errAECoercionFail error returned to you. Coercions of other types just replace the
descriptorType field of the AEDesc. u

u Hex strings must be coerced to something, since they have no intrinsic type. u

You can also coerce nothing, to get a descriptor with zero-length data:

emty()

Even the type can be omitted, leaving just (), in which case the type is 'null'.

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

Lists

To make an AEDescList, just enclose a comma-separated list of descriptors in square
brackets. For example:

[123, -456, “et cetera”]
[sing(1234), long(CODE),
 [“wheels”, “within wheels”]]
[]

The elements of a list can be of different types, and a list can contain other lists or records (see below) as
elements.

Lists cannot be coerced to other types; the type of a list is always 'list'.

Records

An AERecord is indicated by a comma-separated list of elements enclosed in curly braces. Each
element of a record consists of a keyword (a type-code, as described under Basic Types)
followed by a “:”, followed by a value, which can be any descriptor: a basic type, a list or
another record. For example:

{x:100, y:-100}
{'origin': {x:100, y:-100}, extent: {x:500, y:500},
 cont: [1, 5, 25]}
{}

The default type of a record is 'reco'. Many of the Apple Events Object Model structures are
AERecords that have been coerced to some other data type, like 'indx' or 'whos'. You can
coerce a record structure to any type by preceding it with a type code. For example:

rang{ star: 5, stop: 6}

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

s Warning Coercing to an existing type, such as 'bool' or 'TEXT', is a
bad idea. Anyone parsing the descriptor (including AEPrint) will recognize the
type and assume that the data has the normal interpretation, which in this case
it wouldn’t. Bad to awful things would happen. Don’t do it.

Apple Events

The syntax of the formatting string for an entire Apple event (as passed to
AEBuildAppleEvent) is almost identical to that of a record. Each keyed element specified in the
string becomes a parameter or attribute of the event. The differences are:
• There are no curly-braces at the beginning and end of the string.
• The character “~” before a parameter keyword makes it optional.

Here’s an example of how to construct an Open Selection event for the Finder:

AliasHandle parent, itemToOpen;
const OSType finderSignature = 'MACS';
AppleEvent event;
OSErr err;

// Construct the aliases here (not shown)

err= AEBuildEppleEvent(
'FNDR', 'SOPE',
typeApplSignature, @finderSignature, sizeof(finderSignature),
kAutoGenerateReturnID, kAnyTransactionID,
&event, // Event to be created
"----: alis(@@), fsel: [alis(@@)]", // Format string

parent, // param for 1st @@
itemToOpen // param for 2nd @@

);

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

Substituting Parameters

To plug your own values into the midst of a descriptor, use the magic “@”
character. You can use “@” anywhere you can put a basic element like an integer. Each “@” is
replaced by a value taken from the parameter list sent to the AEBuild function. The type of
value created depends on the context in which the “@” is used: in particular, how it’s coerced.

Type Coerced to: Type of fn parameter
read:

Comments:

No coercion AEDesc* A plain “@” will be replaced with a
descriptor parameter.

Numeric (bool, shor,
long, sing, doub, exte)

short, short, long, float,
short double, double

Remember that THINK C’s double
corresponds to type 'exte'!

TEXT char* Pointer to a null-terminated C
string.

Any other type long followed by void* Expects a length parameter
followed by a pointer to the
descriptor data.

s Important Note particularly: that TEXT parameters must be null-
terminated strings, although the resulting descriptor data will not be null-
terminated; and that the general case expects two parameters: the data’s size
and location. s

In addition, you can substitute data from a handle by using two @ signs. An “@@” parameter will read a single
handle from the parameter list and use the data pointed to by that handle as the value of the
descriptor. The “@@” must be coerced so that AEBuild will know what type to make the
descriptor; however, the type coerced to can be anything (the table above is ignored.)

This mechanism is still a bit limited, and may well be improved in the future.

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

Descriptor-String Grammar

Since no language, however small, can be taken
seriously unless it comes fully equipped with a
formidable-looking BNF grammar specification, I
here present one. No attempt has been made to
prevent Messrs. Backus and/or Naur from rolling
over in their respective graves.

Character Classification:
whitespace ‘ ’, ‘\r’, ‘\n’, ‘\t’
digit 0 … 9
paren, bracket,
braces (,), [,], {, }
single-quote '
double quotes “, ”
hex quotes «, »
colon :
comma ,
at-sign @
identchar any other printable character

Tokens:
ident ::= identchar (identchar | digit)*

—Padded/truncated

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer
' character* ' to exactly 4 chars

integer ::= [-] digit+ —Just as in C
string ::= “ (character)* ”
hexstring ::= « (hexdigit | whitespace)* »—Even no. of digits, please

Grammar Rules for AEBuild:

formatstring ::= obj —This is the top level of syntax

obj ::= data —Single AEDesc; shortcut for (data)
structure —Un-coerced structure
ident structure —Coerced to some other type

structure ::= (data) —Single AEDesc
[objectlist] —AEList type

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer
{ keywordlist } —AERecord type

objectlist ::= «blank» —Comma-separated list of things
obj [, obj]*

keywordpair ::= ident : obj —Keyword/value pair
keywordlist ::= «blank» —List of said pairs

keywordpair [, keywordpair]*

data ::= @ —Gets appropriate data from fn param
integer —'shor' or 'long' unless coerced
ident —A 4-char type code ('type') unless coerced
string —Unterminated text; 'TEXT' type unless coerced
hexstring—Raw hex data; must be coerced to some type!

Grammar Rules for AEBuildAppleEvent:

eventstring ::= evtkeywordlist —Top level syntax for AEBuildAppleEvent

evtkeywordpair ::= [~] ident : obj —Keyword/value pair

evtkeywordlist ::= «blank» —List of said pairs
evtkeywordpair [, evtkeywordpair]*

There. Now it’s all crystal-clear, right?

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

An Example & Timing Comparison

As an example, I’ll take a C function to generate an
object descriptor (taken from a Pascal example in the
Object Model ERS, fleshed out and with gobs of error
checking added) and turn it into a call to AEBuild. The object
descriptor we want to generate is:

First line of document 'Spinnaker' whose first word is 'April'
and whose second word is 'is'

Then I’ll execute both functions and compare their execution times.

C Code Using Object-Packing Library
OSErr
BuildByHand(AEDesc *dDocument, AEDesc *theResultObj)
{

OSErr err;
AEDesc dObjectExamined, dNum, dWord1, dWord2, dAprilText, dIsText,

 dComparison1, dComparison2, dLogicalTerms, dTheTest, dLineOne, dTestedLines;

dObjectExamined.dataHandle = /* Zero things to start out with so we can safely */
dNum.dataHandle = /* execute our fail code if things don't work out */
dWord1.dataHandle =
dWord2.dataHandle =
dAprilText.dataHandle =
dIsText.dataHandle =
dComparison1.dataHandle =
dComparison2.dataHandle =
dLogicalTerms.dataHandle =
dTheTest.dataHandle =
dLineOne.dataHandle =
dTestedLines.dataHandle =

NIL;

if(err= AECreateDesc('exmn', NIL, 0, &dObjectExamined))
goto fail;

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

if(err= MakeIndexDescriptor(1,&dNum))
goto fail;

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer
if(err= MakeObjDescriptor('word', &dObjectExamined, formIndex, &dNum,

false, &dWord1))
goto fail;

if(err= AECreateDesc('TEXT', "April", 5, &dAprilText))
goto fail;

AEDisposeDesc(&dNum);
if(err= MakeIndexDescriptor(2,&dNum))

goto fail;
if(err= MakeObjDescriptor('word', &dObjectExamined, formIndex, &dNum,

true, &dWord2))
goto fail;

if(err= AECreateDesc('TEXT', "is", 2, &dIsText))
goto fail;

if(err= MakeCompDescriptor('= ', &dAprilText, &dWord1, true, &dComparison1))
goto fail;

if(err= MakeCompDescriptor('= ', &dIsText, &dWord2, true, &dComparison2))
goto fail;

if(err= AECreateList(NIL, 0, false, &dLogicalTerms))
goto fail;

if(err= AEPutDesc(dLogicalTerms, 1, dComparison1))
goto fail;

if(err= AEPutDesc(dLogicalTerms, 2, dComparison2))
goto fail;

AEDisposeDesc(&dComparison1);
AEDisposeDesc(&dComparison2);

if(err= MakeLogicalDescriptor(&dLogicalTerms, 'AND ', true, &dTheTest))
goto fail;

if(err= MakeObjDescriptor(classLine,&dDocument,formTest,&dTheTest,true,
&dTestedLines))

goto fail;

if(err= MakeIndexDescriptor(1,&dLineOne))
goto fail;

if(err= MakeObjDescriptor(classLine, &dTestedLines, formIndex, &dLineOne,
true, theResultObj))

goto fail;
return noErr;

fail: /* Clean up in case we couldn't build it */
AEDisposeDesc(theResultObj);
AEDisposeDesc(&dObjectExamined);

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer
AEDisposeDesc(&dNum);
AEDisposeDesc(&dWord1);
AEDisposeDesc(&dWord2);
AEDisposeDesc(&dAprilText);
AEDisposeDesc(&dIsText);
AEDisposeDesc(&dComparison1);
AEDisposeDesc(&dComparison2);
AEDisposeDesc(&dLogicalTerms);
AEDisposeDesc(&dTheTest);
AEDisposeDesc(&dLineOne);
AEDisposeDesc(&dTestedLines);

return err;
}

MPW 3.2b5 C compiled this into 816 bytes of object code.

I found that the average time to execute this function was 0.0188 seconds (Quadra 700) or 0.0113 seconds
(IIfx).1† Use this figure for comparison only; your times may vary. The timing is especially dependent on
the number of blocks in the heap, since so many block allocations and disposals are happening.

Descriptor String
obj{ want:type('line'),
 from: obj{ want: type('line'), from: @, form: 'test',
 seld: logi{
 term: [comp{ relo:=, obj1:“April”,
 obj2:
 obj{ want:type('word'), from:exmn(), form:indx, seld:1 }},
 comp{ relo:=, obj1:“is”,
 obj2:
 obj{ want:type('word'), from:exmn(), form:indx, seld:2 }}
],
 logc:AND
 }
 },
 form: 'indx',
 seld: 1
}

1† Yes, it really took half again as long on a Quadra! I think that cache flushing during the PACK call is
responsible. (It barely slows down at all when you disable the caches.)

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

AEBuild Call
char descriptor[] = /* Same descriptor string as above. Note clever */
"obj{ want:type('line')," /* method used to break string across lines. */
 "from: obj{ want: type('line'), from: @, form: 'test'," /* Note parameter here */
 "seld: logi{"
 "term: [comp{ relo:=, obj1:“April”,"
 "obj2:"
 "obj{ want:type('word'), from:exmn(), form:indx, seld:1 }},"
 "comp{ relo:=, obj1:“is”,"
 "obj2:"
 "obj{ want:type('word'), from:exmn(), form:indx, seld:2 }}"
 "],"
 "logc:AND"
 "}"
 "},"
 "form: 'indx',"
 "seld: 1"
"}";

void PackWordDesc(AEDesc *dDocumentObject) /* “Spinnaker” descriptor is a parameter */
{

err = AEBuild(&theResultObj,
descriptorString,
dDocumentObject); /* AEDesc* parameter for "@" */

}

MPW 3.2b5 C compiled this into 42 bytes of object code, plus 310 bytes of data storage for the string.

I found that the average time to execute this function was 0.0049 seconds (Quadra 700) or 0.0070 seconds
(IIfx). Use this figure for comparison only; your times may vary. The timing is dependent on the number of
blocks in the heap, since heap blocks are being allocated and resized.

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

Timing Conclusions

With previous versions of this library, there was a 70% increase in
execution time when using the AEBuild routine. After delivering the bad news, I
wrote:

However, if speed does become an issue, there is always the option of
turbocharging AEBuild by having it directly build descriptors without going
through the Apple Event Manager functions at all. This would save an incredible
number of Memory Manager calls and probably increase performance severalfold.
Anyone using AEBuild will get all these improvements for free.

This is exactly what I did in version 1.1. In fact, I wrote a library (AEStream) to do it, so you can
do it too. It’s easy.

AEBuild is now 1.5 to 4 times as fast (depending on CPU) as the using the Apple Event
Manager and/or Object Packing Library routines. (This means that AEStream was
responsible for a threefold speed-up in AEBuild. Not bad, when you take into account other
overhead like parsing the format string!)

Needless to say, if you were already using AEBuild you get this speed increase absolutely free.
Enjoy!

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

The Demo Program

I’ve included a demonstration program in the
distribution. This is a program I used to debug the
library. It reads a line of input, uses AEBuild to
translate it into an AEDesc, uses AEPrint to translate
the AEDesc back into a string, and prints each
resulting string. Error codes are reported, including
syntax-error messages. The source code is provided
in case you want to see how the functions are called.

s Warning The demo tool does not handle parameter substitution (the
“@” character). If you try to substitute parameters, messy and unpleasant
things may happen. Use some numeric value in place of parameters, and then
replace it with “@”s after you paste the string into your program. s

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

The Header Files

Here for your convenience are printouts of the
header files as of 21 July 1992.

AEBuild.h
#define aeBuild_SyntaxErr 12345 /* Let's get an Official OSErr code someday */

typedef enum{ /* Syntax Error Codes: */
aeBuildSyntaxNoErr = 0, /* (No error) */
aeBuildSyntaxBadToken, /* Illegal character */
aeBuildSyntaxBadEOF, /* Unexpected end of format string */
aeBuildSyntaxNoEOF, /* Unexpected extra stuff past end */
aeBuildSyntaxBadNegative, /* "-" not followed by digits */
aeBuildSyntaxMissingQuote, /* Missing close "'" */
aeBuildSyntaxBadHex, /* Non-digit in hex string */
aeBuildSyntaxOddHex, /* Odd # of hex digits */
aeBuildSyntaxNoCloseHex, /* Missing "»" */
aeBuildSyntaxUncoercedHex, /* Hex string must be coerced to a type */
aeBuildSyntaxNoCloseString, /* Missing "”" */
aeBuildSyntaxBadDesc, /* Illegal descriptor */
aeBuildSyntaxBadData, /* Bad data value inside (…) */
aeBuildSyntaxNoCloseParen, /* Missing ")" after data value */
aeBuildSyntaxNoCloseBracket, /* Expected "," or "]" */
aeBuildSyntaxNoCloseBrace, /* Expected "," or "}" */
aeBuildSyntaxNoKey, /* Missing keyword in record */
aeBuildSyntaxNoColon, /* Missing ":" after keyword in record */
aeBuildSyntaxCoercedList, /* Cannot coerce a list */
aeBuildSyntaxUncoercedDoubleAt /* "@@" substitution must be coerced */

} AEBuild_SyntaxErrType;

// In all the "v..." functions, the "args" parameter is really a va_list.
// It's listed as void* here to avoid having to #include stdarg.h.

// Building a descriptor:

OSErr
AEBuild(AEDesc *dst, const char *src, ...),

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer
vAEBuild(AEDesc *dst, const char *src, const void *args);

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer
// Adding a parameter to an Apple event:

OSErr
AEBuildParameters(AppleEvent *event, const char *format, ...),
vAEBuildParameters(AppleEvent *event, const char *format, const void *args);

// Building an entire Apple event:

OSErr
AEBuildAppleEvent(AEEventClass theClass, AEEventID theID,

DescType addressType, const void *addressData, long addressLength,
short returnID, long transactionID, AppleEvent *result,
const char *paramsFmt, ...),

vAEBuildAppleEvent(AEEventClass theClass, AEEventID theID,
DescType addressType, const void *addressData, long addressLength,
short returnID, long transactionID, AppleEvent *resultEvt,
const char *paramsFmt, const void *args);

AEBuildGlobals.h
/*
* AEBuildGlobals.h Copyright ©1991 Apple Computer, Inc.
*/

extern AEBuild_SyntaxErrType
AEBuild_ErrCode; /* Examine after AEBuild returns a syntax error */

extern long
AEBuild_ErrPos; /* Index of error in format string */

AEPrint.h
/*
* AEPrint.h Copyright ©1991 Apple Computer, Inc.
*/

OSErr AEPrint(AEDesc *desc, char *bufStr, long bufSize);

The AppleEvent Builder/Printer

